Механика жидкости, газа и плазмы — обширная область современной науки — существует по крайней мере со времён Архимеда и интенсивно продолжает развиваться в наши дни. Интерес к этой области легко объяснить разнообразными и необходимыми приложениями к навигации, воздухоплаванию, добыче и транспортировке энергоресурсов, а в последнее время к решению проблем атомной физики и управляемого термоядерного синтеза, освоения космоса, то есть к актуальным вопросам научно-технического прогресса, относящимся к развитию энергетики, транспорта и созданию новых видов техники, в том числе крайне необходимой оборонной техники. К этому следует добавить чисто научные, а не исключено, что в недалёком будущем и прикладные, интересы к проблемам астрофизики. Задачи механики содержат большой объём количественной информации и требуют установления в ней закономерностей. По этой причине механика тесно соприкасается и переплетается с другой, тоже древнейшей, наукой — математикой, вплоть до того, что часто употребляемые термины "механико-математические" и "физико-математические" воспринимаются как единые неразрывные понятия. Иными словами, рабочим языком механики являются математические термины, уравнения, правила и т.п. В частности, современный язык механики жидкости и газа — гидромеханика, точнее, уравнения гидродинамики и газодинамики введён в употребление в XVIII веке Эйлером и Даниилом Бернулли, а уравнения магнитной газо- и гидродинамики, базирующиеся на той же гидромеханике, работах Ампера и уравнениях Максвелла, — шведским физиком Х. Альфвеном в середине ХХ века. В результате основной математический аппарат механики жидкости, газа и плазмы состоит из дифференциальных уравнений с частными производными, нелинейными (точнее, квазилинейными), что существенно отличает их от традиционных линейных уравнений математической физики, изучаемых в университетах и технических вузах. Задачи с уравнениями механики практически во всех случаях не имеют явных так называемых аналитических точных решений. Тем не менее,
Источник